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Abstract

We find evidence of strong mean-reversion in U.S. natural gas prices
and proceed to test a valuation model of natural gas storage leases
based on mean-reversion’s effects. The model utilizes a two-factor tree
in which both factors mean-revert, and the model calibrates to current
market conditions, accounts for volume constraints, and can be applied
to historical data. In applying the model to data on U.S. natural gas,
we find that the model can consistently capture large amounts of op-
tionality based on the premise of strongly mean-reverting prices: On
historical price data spanning 1999 to 2006, simulated trading using
our model obtained average values (not including the cost of the lease)
of $1.244 per million British-thermal-units over intrinsic value for fast-
cycle storage leases and $0.397 per million British-thermal-units over
intrinsic for slow-cycle leases. Results relating stored inventory to stor-
age lease optionality are also shown.
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1 Introduction

In the U.S. natural gas industry, the modeling and valuation of leases
on natural gas storage have been major concerns, especially since the
U.S. has several trillion cubic feet of such storage. Firms in the indus-
try recognize these leases possess vast optionality but do not believe
they correctly understand and extract it. Heretofore, other authors on
this subject have provided some basic understanding of lease optional-
ity, but none has quantified this value using historical data. The goal
of this paper is to quantify and better understand the optionality of
U.S. natural gas storage leases, and we have two major findings: (a)
The mean-reversion in U.S. natural gas spot prices, which is exploited
by storage lease optionality, appears to be much greater than previ-
ously documented, and (b) the actual optionality that could have been
extracted from leases for previous years appears to be large.

The U.S. currently has over four-trillion cubic feet of working nat-
ural gas storage on annual consumption of over 22-trillion cubic feet.
Depleted oil and natural gas reservoirs, accounting for over 80% of U.S.
storage, provide the slowest injection/withdrawal rates while the two
other main types of storage, salt caverns and aquifers, provide faster
rates.1 In short, depleted reservoirs, relative to the other types of stor-
age, are filled with more sand or debris that inhibits the movement
of natural gas stored within, thus slowing the rates of injection into
and withdrawal from reservoirs. Thompson, Davison, and Rasmussen
(2003) summarizes the main types of storage further.

Owners of storage facilities lease out space within, and a lease-
holder has the right to inject into or withdraw from the facility only
for a prespecified period of time, usually between each April 1st and
the following March 31st, and within prespecified volume constraints,
which are described through a ”ratchet schedule.” A ratchet schedule
is a schedule of all possible inventory levels and their associated daily
maximum injection and withdrawal rates.2 As the lease-holder injects
or withdraws, two types of transaction costs are typically incurred: a
”fuel” charge, which is a percentage of injected or withdrawn gas, and
a ”commodity” charge, which is a dollar amount per unit of injected or
withdrawn gas. These charges mostly exist to cover variable costs of
operating the facility, with the chief cost being compressor operation
for pushing more natural gas into or out of the facility.

Authors such as Manoliu (2004), Ludkovski and Carmona (2005),
Chen and Forsyth (2006), and Boogert and De Jong (2008) posit, as

1One can find this information on the Energy Information Administration and the
Federal Energy Regulatory Commission websites.

2Inventory levels for which these rates change from preceding levels are called ”ratch-
ets.” Ratchets typically exist since injection rates get slower as facilities fill while with-
drawal rates get slower as facilities deplete, just like filling and emptying a balloon.
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do we, that storage lease optionality derives from the ability to exploit
mean-reverting trends in natural gas spot prices: Only the opportunity
to buy spot low, store it as prices mean-revert higher, then sell it high
exists.3 And short-term, current forward prices on natural gas provide
information regarding the expected spot price mean-reversion. We
believe, as argued in Mastrangelo (2007), that such mean-reversion
derives mainly from daily demand characteristics. Natural gas is a
major U.S. heating source and colder (warmer) than expected days
typically cause demand to increase (decrease). Such weather shocks
mean-revert and carry through to demand and spot prices. Seasonality
in these prices occurs since U.S. demand is predictably greater in winter
than in summer, which typically leads to higher winter forward prices
for U.S. natural gas.

If mean-reverting spot trends help create value in storage leases, a
natural question concerns the persistence of these trends. Equilibrium
arguments concerning convenience yields, e.g., Hull (1997), suggest
costless and abundant natural gas storage should eliminate any trends
causing excess expected profitability, but natural gas storage is neither
costless nor abundant. The fixed costs to develop a storage field can
be over $10 million per billion-cubic-feet of capacity, and most storage
facilities in the U.S. possess the slowest, most constrained injection and
withdrawal capabilities. Furthermore, storage facilities are often sited
based on geology and regulation, not demand.

The hypothesis that mean-reversion affects storage lease optionality
implies the magnitude of that reversion is important. Studies such as
Pilipovic (1998), Clewlow and Strickland (2000), and Benth and Benth
(2004) find statistical evidence of weak to moderate mean-reversion in
U.S. natural gas prices while Eydeland and Wolyniec (2003) statisti-
cally rejects the mean-reversion hypothesis. Parsons (2008) explains
why results like these may be biased downward and do not necessarily
indicate weak mean-reversion in reality, they may just indicate that
the price model used in the estimation is too simplistic regarding the
long-run mean. Intuitively, evidence of strong spot mean-reversion in
the U.S. market can be seen every day in its forward curve: Forward
prices for adjacent months can be over 15% different from each other,
which is too much difference for spot prices to overcome in too little
time with only slight mean-reversion. In Section 4 we summarize our
method of fitting mean-reversion speeds. In short, we find evidence
that very strong mean-reversion exists in U.S. natural gas prices when
the model accounts for a more generalized long-run mean process.

For modeling natural gas storage value, tree models, such as the
one in Manoliu (2004), are only one of three prevalent methods. An-

3Kjaer and Ronn (2008) claims that trading only forward contracts with storage in
some cases can capture values close to such a spot trading strategy.
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other method is Monte Carlo simulation, which is outlined in Eydeland
and Wolyniec (2003) and Boogert and De Jong (2008). Monte Carlo
simulation appears to be the most used of the three at this time in
the energy industry. The third, more recent method is the stochas-
tic control approach as seen in Thompson, Davison, and Rasmussen
(2003), Ludkovski and Carmona (2005), and Chen and Forsyth (2006).
To our knowledge, none of these valuation models has been previously
back-tested on historical data for quantifying storage lease optionality.

For building our valuation model, a tree model that we may success-
fully back-test, we concentrate our efforts in two parts: (a) developing a
realistic price model of the (mean-reverting) spot price process, and (b)
developing a methodology for capturing all of the optionality in storage
leases, given all the constraints and the spot price process. Each part
is complex to solve, especially for ensuring that the price model can be
calibrated to all market conditions seen in back-testing. We succeed
in creating a two-factor tree model of valuation that brings together
both parts so that back-testing could commence. The two factors, de-
scribed in more detail in Section 2, can be thought of as representing a
short-term weather effect and a longer-term effect of changing supply
and demand forecasts.

In back-testing our valuation model we find it is very successful at
consistently capturing vast amounts of optionality based on historical
data. We tested the model on two types of storage leases: fast-cycle
(the daily injection and withdrawal rates are such that the lease’s max-
imum capacity can be filled and depleted in six cycles per year) and
slow-cycle (the cycle-rate is only 1.5 per year). Using historical price
data from 1999 to 2006, our simulated daily trading captured average
values (not including the cost of the lease) of $1.244 per million British-
thermal-units4 (MMBtu) over intrinsic value for the fast-cycle storage
lease and $0.397/MMBtu over intrinsic value for the slow-cycle lease.5

Corresponding forecasts of those values from the model, before any sim-
ulated trading commenced, were $1.149/MMBtu and $0.402/MMBtu,
respectively. Further, all values from simulated trading over those
years were strictly greater than corresponding initial intrinsic values.
We note one caveat about out price data: A time-asynchronicity exists
within it, and obtaining data without such asynchronicity is extremely
challenging. Our results and the effects of this asynchronicity are ex-
plained further in Section 5.

An interesting aspect of our modeled lease optionality concerns its

4One million British-thermal-units is approximately equal to 1,000 cubic feet of natural
gas.

5”Intrinsic value” for storage leases is merely the value that can be risklessly obtained
by buying and selling natural gas in the current forward market and using storage to hold
any forward-purchased gas through to its subsequent forward sale.
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dependence on inventory level. Secomandi (2010) discusses this as-
pect for simple storage leases. Specifically, correctly positioning the
gas inventory to capture spot trends adds to the optionality; this im-
plies storage leases possess follow-on optionality. For example, hav-
ing zero inventory disallows one from withdrawing now and buying
back later should spot prices shock up then trend down; however, be-
ing partly filled allows for that trading. Further, inventories associ-
ated with higher maximum injection and withdrawal rates, as seen in
the ratchet schedule, allow for trading more volume as trends emerge,
thus increasing optionality. The preceding suggests that storage lease
optionality is typically, but not necessarily, greatest for inventories
strictly between full and empty and is optimally extracted by trading
spot daily as opportunities arise.

Our valuation model shows that, at any given time, these opti-
mal inventory levels tend to group together into a pocket. Below that
pocket, the maximum allowed injection at the current spot price is a
positive net present value trade; above, maximum withdrawal is posi-
tive net present value. Within the pocket, no injection or withdrawal is
recommended. Secomandi (2010) Theorem 1 proves this result for sim-
ple storage leases having no ratchets. The pocket is where the change
in lease value for a change in inventory, up or down, is close to zero
net present value at the given spot price. As the spot price moves, the
pocket moves. Thus, for an inventory in the pocket, both directions
of spot price movement, up or down, are likely to move the pocket to
no longer include that inventory, which then leads to either injection
or withdrawal being a positive net present value trade for that inven-
tory. Whereas for an inventory outside the pocket, only one direction
of movement increases the corresponding positive net present value
for the optimal trade associated with that inventory while the other
direction decreases it. Optimal storage trading consists of constantly
trading inventory in the direction of the pocket, which is not only a
positive net present value trade itself, but also increases the probabil-
ity that either direction of subsequent spot price movement generates
another positive net present value trade.

An intriguing result of our model is that multiple pockets of high-
optionality, caused by ratchets, may exist at any one time. This be-
havior occurs when advantages exist for being on either side of the
ratchet. For example, having a higher daily withdrawal rate above a
ratchet while having a higher daily injection rate below that ratchet
allows for trading higher volumes on either side of the ratchet as par-
ticular trends emerge. We illustrate this behavior in Section 5.

The paper proceeds as follows. Section 2 gives the mean-reverting,
two-factor spot process used in valuing storage leases, including the
reasons for choosing such a process. We also detail the backward re-
cursion methodology used for valuing storage leases, which captures
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lease optionality for an arbitrary pricing tree while accounting for var-
ious trading constraints. Section 3 summarizes the calibration and
delta-hedging procedures for the model. Section 4 details our estima-
tion of mean-reversion speeds used in the price model; the estimates
give evidence of heavy mean-reversion in U.S. natural gas spot prices.
Section 5 gives back-testing results that quantify how much optional-
ity may actually exist in storage leases. The section also details an
example from the model relating optionality and inventory. Section 6
concludes with a brief discussion of future research on this topic.

2 A TWO-FACTOR MODEL OF STOR-

AGE LEASE VALUE

U.S. natural gas price processes are complicated as seen in Exhibit 1,
which shows daily spot prices6 from 1999 through 2006 for natural gas
delivered at Henry Hub, Louisiana. In this exhibit, spot prices appear
to strongly revert toward a long-run mean, which itself appears to
wander, but mean-revert. Specifically, these prices commonly fluctuate
with over 3% daily volatility, which is quite high; yet, they do not tend
to wander in a random walk like stock prices, they tend to cluster
together around a price level that slowly wanders within a band of
price levels. Further, prices exhibit seasonality, tending to be higher
in winter months and lower in summer months.

As previously stated, any good valuation model of natural gas stor-
age leases must (a) account for this complicated mean-reversion and (b)
value all the optionality given the volume constraints and this mean-
reversion. Our strategy is to develop a two-factor tree model since
two factors do well at explaining U.S. natural gas forward price move-
ments (explained just below) and tree models do well at capturing the
American-type optionality that storage leases possess. In this section,
we first examine a candidate continuous-time price model of spot and
forward prices, which is shown to possess very realistic characteris-
tics. Because of this realism, we extend this candidate model into a
discrete-time version to be used in a pricing tree. Finally, we detail the
backward recursion method for valuing storage optionality using such
a tree.

The continuous-time spot process

Principal components analysis routinely shows that two factors of risk
explain approximately 95% of movements in U.S. natural gas forward
prices. Since forward prices and expected spot prices are related, at

6All price data throughout this paper come from Norman’s Historical Data.
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least theoretically, a two-factor price model is a natural starting point
for the spot price process. For our spot process, we settle upon a price
model that is close to the one in Pilipovic (1998). In their model they
assume a mean-reverting spot price in which the long-run mean is a
geometric Brownian motion. We assume a two-component long-run
mean with one component being a mean-reverting process, the other
being a deterministic process. Such a design appears to better match
the data as we show in Section 4. Our price model is as follows:

dSt

St
= a(ln(Lt) + µt − ln(St))dt + σS,tdzt (1)

dLt

Lt
= b(ln(L) − ln(Lt))dt + σL,tdwt (2)

where

St = gas-daily (spot) price at time t
Lt = time t stochastic component of the long-run mean
µt = time t deterministic component of the long-run mean
L = long-run mean of the Lt process
a = mean-reversion speed of the St process
b = mean-reversion speed of the Lt process

σS,t = time t deterministic volatility of the St process
σL,t = time t deterministic volatility of the Lt process

zt = independent Brownian motion of the St process
wt = independent Brownian motion of the Lt process

Before solving this model, intuition about it must be imparted. The
choice of a mean-reverting spot model is intuitive since natural gas spot
prices appear to do just that. However, the volatility term-structures
of forward prices from models in which the long-run mean is solely
deterministic (i.e., one-factor models) show volatilities diminishing too
rapidly in the forward contract expiration relative to reality. Further,
all forward and spot prices from a model in which the long-run mean is
deterministic have perfect instantaneous correlation, typically leading
to only near-parallel shifts in modeled forward curves from day to day.

The introduction of a stochastic component to the long-run mean as
given in (2) overcomes the shortfalls of the one-factor price model and
appears more realistic from our analysis on mean-reversion. Obviously,
this enhanced setup creates spot and forward prices with less-than-
perfect instantaneous correlations, so forward curves can ”twist” as
well as shift parallel in the model. And (2) also introduces more volatil-
ity into long-term forward prices, thus mitigating the steep decline in
volatility term-structures from one-factor price models. Further, the
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enhanced setup’s correlation structure has very desirable properties
that mimic observed forward price correlations. Schwartz and Smith
(2000) and Manoliu (2004) choose similar two-factor price processes for
similar reasons. More on our setup is discussed when forward prices
from (1) and (2) are introduced.

The introduction of a deterministic component to the long-run
mean as given in (1) allows seasonality to be incorporated into the
spot process. Deterministic, time-varying volatilities in both (1) and
(2) allow for the incorporation of seasonality there, as well. Seasonality
in U.S. natural gas forward prices and their volatilities exists and is
persistent. These deterministic components help us capture seasonality
and facilitate calibration. More on that when calibration is discussed.

Economic intuition regarding the factors is as follows. The shocks
and mean-reversion of the St process can be surmised as being driven
by weather: As current temperatures depart from expectations, the
spot price gets shocked, but mean-reversion dissipates those shocks
over time. The shocks of the Lt process can be surmised as being
driven by supply and demand: As firms adjust their forecasted long-
term commodity needs, they tend to exert pressure on spot prices for
long periods, which is induced in the model by a stochastic shift in
the long-run mean. If these intuitions are correct, then the indepen-
dence assumption regarding these shocks is probably realistic. Similar
arguments are given in Schwartz and Smith (2000).

In solving the spot model, we first apply Ito’s lemma to (2) to
find the solution for ln(Lt), which is then inserted into (1) to solve
(applying Ito’s lemma again) for the spot price process.7 For T > t,

ST = Se−a(T −t)

t L
a

(a−b) (e−b(T −t)−e−a(T−t))

t · A · B · C ·D (3)

where

ST = the gas-daily (spot) price at time T > t

A = eln(L)(1−e−a(T−t)− a
(a−b) (e−b(T−t)−e−a(T−t)))

B = e
∫

T
t

ae−a(T−t′)
(

µt′−
∫

t′
t

e−b(t′−t′′)σ2
L,t′′/2 dt′′

)
dt′

C = e
∫ T

t ae−a(T−t′)
(∫ t′

t e−b(t′−t′′)σL,t′′dwt′′
)

dt′+
∫ T

t e−a(T−t′)σS,t′dzt′

D = e−
∫ T

t
e−a(T−t′)σ2

S,t′/2 dt′

Obviously, (3) leads to a process affected by both mean-reverting
and seasonal trends, trends that can be valuable for holders of natural
gas storage leases. We next show that forward prices derived from (1)
and (2) possess realistic characteristics.

7Concepts from Oksendal (2000) were extremely helpful in solving these equations.
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The derived forward price process

Heretofore, we have not discussed the price model in the context of any
probability distribution, real or risk-neutral, and we must relate spot
and forward prices in this model for calibration and hedging purposes.
In a risk-neutral world, forward prices are merely expected spot prices.
For natural gas, a hard-to-store commodity in which the no-arbitrage
arguments in Hull (1997) do not apply, we believe such behavior exists
in the real world as well. Our reasoning is as follows.

Just as producers are long natural gas, consumers (e.g., some man-
ufacturers and anyone with a gas appliance) are short gas. Under
risk-aversion and large storage frictions, the former group is willing
to accept a discount to expected spot prices for selling forward while
the latter is willing to pay a premium for buying forward. Since both
groups are fairly well-dispersed and highly competitive, we expect nei-
ther has bargaining power over the other in the long-run; thus, we
reason that if any risk premium/discount in forward prices exists, it
should be small.8 And if forward prices are martingales in the real
world, then the real world and risk-neutral world coincide. Such a
situation is convenient when using real-world historical data for any
parameter fitting regarding the price model.

In the price model, calibration is performed in a risk-neutral setting;
thus, we let Et() denote the time t conditional expectations operator
under the risk-neutral distribution. Also, let Ft,T denote a forward
price at time t and expiring at time T > t. In the risk-neutral world,
the following must hold: Ft,T = Et(ST ). Taking the time t expectation
of (3) and applying Ito’s lemma yields the following result:

dFt,T

Ft,T
= e−a(T−t)σS,tdzt +

a

(a − b)
(e−b(T−t) − e−a(T−t))σL,tdwt (4)

The first expression on the right-hand side of (4) is the one-factor
representation of forward price changes under mean-reversion. To this
term is added another term involving the second factor, and the signif-
icance of this factor increases in forward contract expiration for a large
and b small. Thus, for a large and b small, (4) mitigates the steep de-
cline in volatility term-structures that one-factor mean-reverting price
models possess. Specifically, our volatility term-structure for forward
prices starts high, reduces quickly in expiration, then reduces slowly
in expiration as the significance of the second term on the right-hand
side of (4) increases. This description matches closely the observed
volatility term-structures for U.S. natural gas forward contracts.

8Eydeland and Wolyniec (2003) show empirical evidence of zero drift in actual power
forward prices.

9



From (4) one may derive correlations of forward prices to one an-
other that are also realistic.9 Again for a large and b small, instanta-
neous correlations of log-returns among very long-term contracts go to
one, and correlations between near-term and long-term contracts are
less than one.

Evidence for a large and b small is presented in Section 4: The spot
appears to revert heavily towards its long-run mean in the short-run,
and that mean appears to wander over time with slight dampening
from mean-reversion.

The price model given in (1) through (4) has many appealing char-
acteristics, so it is chosen to extend into a discrete-time process for
modeling storage lease values and accompanying American optional-
ity.

The discrete-time price process

Previously, we developed a continuous-time model of spot and forward
prices that possesses realistic characteristics. This section extends that
model into the discrete-time process to be used in a pricing tree. The
tree is used to value natural gas storage leases and accompanying op-
tionality. The discrete-time price model is as follows.

ln(St+∆t) = e−a∆tln(St)+(1− e−a∆t )(ln(Lt)+µt)−
η2

t,∆t

2
+ z̃∆t (5)

and

ln(Lt+∆t) = e−b∆tln(Lt) + (1 − e−b∆t)ln(L) −
ξ2
t,∆t

2
+ w̃∆t (6)

where

∆t = the time-step in years
η2

t,∆t = σ2
S,t

(1−e−2a(∆t))
2a

ξ2
t,∆t = σ2

L,t
(1−e−2b(∆t))

2b

z̃∆t ∼ N (0, η2
∆t)

w̃∆t ∼ N (0, ξ2
∆t)

Such a model requires a two-step approach for propagation: Step
one holds both Lt and µt constant and shocks ln(St) as given by (5),
step two shocks ln(Lt) as given by (6), and the process repeats. This
process is analogous to its counterpart in (1) and (2) where Lt is
fixed for the next instantaneous movement in the St process, then

9Pilipovic (1998) shows historical volatility term-structures and correlations.
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Lt moves instantaneously, and the process repeats. Equations (5) and
(6) become the basis for our pricing tree, and if ∆t is small enough,
the discrete-time process will approximate the continuous-time process
well.

The tree is three-dimensional across the spot price, the long-run
mean, and time with trinomial branches for each of the first two di-
mensions. The tree is constructed such that the trinomial transition
probabilities through time for the St process satisfy the following set
of equations:

Et(ln(St+∆t)) = Σ3
i=1pi

(
ln(Si,t+∆t)

)
(7)

η2
t,∆t = Σ3

i=1pi

(
ln(Si,t+∆t) − Et(ln(St+∆t))

)2 (8)

1.0 = Σ3
i=1pi (9)

where the first two left-hand side expressions come from (5) and (6),
while the right-hand side expressions come from the three associated
nodes in the tree that branch from the corresponding St value. A
similar set of equations exist for the Lt process.

Storage contract valuation and the backward re-
cursion methodology

Backward recursion is an excellent method for capturing American
optionality. In this section, we discuss the backward recursion used to
value the complicated, follow-on optionality in storage leases.

In moving backward through a pricing tree, we calculate storage
lease values based on optimal trading and price-taking behavior at each
node. Specifically, for each node in the tree, and for each inventory
that could possibly be held at each node, we proceed by first calculating
two values for each such node-inventory combination: (a) - the value of
immediately trading a volume of natural gas at that node’s spot price,
ensuring that the volume is within the volume constraints pertaining
to the inventory; (b) - the continuation value of holding the new gas
inventory going into the next period. Needing the continuation value
is what drives the use of backward recursion. The optimal spot trade
for each such node-inventory combination is the trade that maximizes
the sum of these two values (we show this procedure mathematically
further below).

The following example will help. Assume we are at some future
node in the tree, we are only allowed to trade in increments of 5,000
units if we trade, and the inventories possible at that node are zero
units, 5,000 units, and 10,000 units. At that node, we calculate the
optimal trades and values for each possible inventory. We start with
zero inventory and consider three possible trades: (a) - buy and inject
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nothing and receive the discounted expected value of carrying zero
inventory into next period, (b) - buy and inject 5,000 units and receive
the discounted expected value of carrying 5,000 units inventory into
next period, and (c) - buy and inject 10,000 units and receive the
discounted expected value of carrying 10,000 units inventory into next
period. Of the three possible trades, the node’s optimal trade for an
inventory starting at zero is the trade where the sum of the immediate
buy and its corresponding inventory-carryover value is maximized. The
same procedure is followed for the other possible inventories at that
node, 5,000 and 10,000 units, except that possibly withdrawing and
selling is involved with those inventories.

The preceding implies that we must calculate a whole vector, in-
dexed by inventory level, of these optimal values at each node. Storage
leases complicate this optimization since both the set of possible inven-
tories held and spot volumes traded are continuous. In the valuation
model we approximate continuous inventory levels and trading vol-
umes using a grid of inventory levels ranging from empty to the lease’s
maximum capacity, and we impose that the possible set of spot trades
consists only of those volumes that change inventory from one grid
level to another while adhering to all volume constraints in the ratchet
schedule. If the grid is fine enough, we will approximate trading con-
tinuous values well.

We now state this optimization mathematically. Let each node in
our two-factor tree be denoted by a triple of indexes spanning time, a
spot price level, and a long-run mean level, respectively. We use the
following notation:

X = the discrete set of inventory levels
Qx = the permissible set of trades at the given

inventory level x ∈ X
q = a spot trade volume that is positive for

buys (injections) and negative for sales (withdrawals)
St,i,j = the spot price associated with being at node (t, i, j)

rt = the riskless rate over time t
f = the fuel transaction charge in percent
c = the commodity transaction charge in dollars

Et() = the time t conditional expectations operator
|q| = the absolute value of q

The optimal value at node (t, i, j), and inventory x is

V(t,i,j)(x) = max
q∈Qx

(
V spot

(t,i,j)(q) + V continue
(t,i,j) (x + q)

)
(10)

where
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V(t,i,j)(x) = the optimal value at node (t, i, j)
with current inventory x ∈ X

V spot
(t,i,j)(q) =




|q|

(
−St,i,j − f

(100−f)
St,i,j − c

)
for buying

|q|
(
St,i,j − f

(100−f)St,i,j − c
)

for selling

V continue
(t,i,j) (x + q) = Et(Ṽ(t+1,.,.)(x+q))

(1+rt+1)

Two possible value functions for V spot
(t,i,j)(q) exist since one is for

buying with paying both the fuel and commodity charges while the
other is for selling with paying those charges. The fuel charge is paid on
a grossed-up volume such that the desired net volume is delivered once
the fuel charge is subtracted. The tilde above the function V(t+1,.,.)(x+
q) for the continuation value merely denotes that lease value at time
t + 1 is random at time t. The two dots embedded in the node indexes
of that function denote that expectations are to be taken over several
nodes at time t + 1.

The recursion begins at the final-period nodes where all values for
continuation in (10) are zero; thus, the optimized value for each inven-
tory in the inventory vector at each of these nodes is merely the value
of withdrawing and selling as much inventory as is allowed. To com-
plete the lease valuation, one merely has to recursively perform (10),
going backward through each node in the tree, until the beginning pe-
riod is reached. The value of our lease is the value corresponding to
the current inventory level in the inventory vector at the beginning pe-
riod. This same recursion method for valuing storage leases is shown
in Manoliu (2004) and Boogert and De Jong (2008) and is used in the
Clewlow-Strickland one-factor storage model. This method is also an
extension of the recursion for similar, but less complicated contracts,
called swing options, used in Jaillet, Ronn and Tompaidis (2004).

3 CALIBRATION AND HEDGING

In order to calibrate the discrete-time spot process, a bounded, trino-
mial tree-type structure, described earlier, is imposed upon the price
model. The price model itself needs three parameter values prior to
calibrations: a, b, and a long-to-short term volatility ratio described
just below. Estimates of these values are given in the next section.
Once calibration is performed, then derivative contracts may be val-
ued, including forward contracts which are used for hedging. We now
examine calibration, then hedging.
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Calibrating the discrete-time price process

The major assumptions imposed on the pricing tree are sequentially
listed below with discussion of them given after.

Assumption 1 The deterministic volatilities in (5) are step functions
with one step per forward month.

Assumption 2 The deterministic volatilities in (6) are merely the
corresponding volatilities in (5) multiplied by a constant k, which we
call the long-to-short term volatility ratio.

Assumption 3 The deterministic component of the long-run mean,
µt, given in (5) is a step function with one step per forward month.

Assumption 4 The following values are assumed for the price model.

L0 = The current spot price
L = The current spot price

∆t = 1
365

, (one-day)

Assumptions 1 and 3 exist for calibration: They allow one to cali-
brate to prices on forward contracts for monthly natural gas delivery,
one contract per calendar month, and their volatilities. These forward
contracts are prevalent in the U.S. natural gas market and do not exist
with finer granularity than monthly. The assumed step functions can
result in large changes in the spot process, which is unintuitive. How-
ever, these large changes do occur. For example, the forward price for
natural gas delivered in December at most any U.S. location can easily
be 15% greater than that for delivery in the preceding month.

Assumption 2 aids our effort by halving the number of volatilities
needed to calibrate the price model.

Assumption 4 shows three values used in the price model; they enter
the model as constants. The third value corresponds to how spot gas
is traded in the US: once per day. The first two values are chosen to
fix the beginning-state long-run mean, L0, and start its process with
no inherent trend from mean-reversion. Any error in our beginning
value for L0 is ameliorated from calibrating µ1 to the first forward
price, and starting the process with no trend is reasonable since the
direction of any inherent trend is unknown to us. The remaining model
parameters, a, b, and k were fitted to our historical data as given in
Section 4.

The tree is calibrated to match monthly forward prices as seen in
the market, starting with the rest-of-month price. This calibration
approach is similar to the one in Jaillet, Ronn and Tompaidis (2004)
and the Hull-White approach as given in Hull (1997).
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The tree is also calibrated to a term-structure of observed volatili-
ties on monthly forward contracts. Since the volatilities needed in the
price model are forward volatilities commensurate with a two-factor,
mean-reverting price process, the term-structure of observed volatili-
ties is converted accordingly. The conversion is such that total variance
to each contract month is the same when calculated from either the ob-
served volatility term-structure or from our model using the converted
volatilities associated with it.

We note that our full calibration is not an absolute or squared errors
minimization as in Jaillet, Ronn and Tompaidis (2004) and Chen and
Forsyth (2006), it is exact.

Hedging storage contract values in discrete-time

In our price model, spot prices are driven by two factors. Subsequently,
forward prices and other derivatives are driven by two factors. Since a
plethora of traded forward contracts with different expirations exists,
any two portfolios of them, except for linearly dependent portfolios,
may be chosen to dynamically hedge storage leases. At least this is
the way delta-hedging works in continuous-time. However, we have a
discrete-time tree in which each node branches into nine other nodes.
How may we calculate deltas in this framework?

We use a least-squares approach in which two portfolios of forward
contracts are selected for hedging purposes. Specifically, lease value-
changes between today and tomorrow from the tree are regressed on
value-changes of the two portfolios from the tree. The betas of the two
portfolios are the hedging deltas. Since we use only two portfolios of
(linear) forward contracts to hedge over nine subsequent nodes of (non-
linear) lease values, perfect hedging will not result. However, since ours
is a two-factor price model, using two portfolios should be sufficient
to hedge away most lease value risk in the model. Back-testing on
historical data will confirm whether or not this form of hedging works
well in reality.

4 EVIDENCE OF SPOT PRICE MEAN-

REVERSION AND PARAMETER ESTI-

MATES

The effects of spot price mean-reversion cannot be underestimated in
valuing storage leases. Mean-reversion creates trends that can gen-
erate optionality, adding to the value of storage leases, especially for
large magnitudes of mean-reversion. Thus, estimating mean-reversion
is important.
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Evidence of mean-reversion in U.S. natural gas spot prices is well
documented: Prices typically trade within upper and lower bounds;
volatility term-structures of forward prices are such that volatilities
decrease in forward contract expiration. The former result indicates
bounded variances over time, which is consistent with mean-reversion.
The latter result indicates that shocks dissipate over time, which occurs
with mean-reversion.

Many authors model natural gas prices as mean-reverting, but few
have measured its magnitude, and none has done so in the two-factor
setting of our price model. The evidence so far is as follows: Pilipovic
(1998), Clewlow and Strickland (2000), and Benth and Benth (2004)
find that natural gas prices propagate with low to moderate mean-
reversion speeds (approximately between 2.0 and 39.0) while Eydeland
and Wolyniec (2003) finds no statistically significant mean-reversion.
Intuitively, evidence of strong spot mean-reversion in the U.S. market
exists almost every day in its forward curve: Forward prices for some
adjacent months can be over 15% different from each other, which is
too much difference for spot prices to overcome in too little time with
only slight mean-reversion. We find evidence of large spot price mean-
reversion, detailed below, and we contend that low and insignificant
mean-reversion speed estimates in the other studies could be caused
by an estimation bias documented in Parsons (2008). This bias oc-
curs in commodities like natural gas in which the long-run mean of
prices varies either stochastically or deterministically. Simple estima-
tion procedures, such as the ones used in previous studies, confuse a
varying long-run mean with weak mean-reversion, thus leading to low
mean-reversion speed estimates even when true mean-reversion is high.

U.S. natural gas prices indicate the presence of a varying long-
run mean, e.g., the winter/summer price seasonality, which must be
treated carefully when estimating as discussed above. We choose the
following approach: Use our two-factor pricing tree, which incorporates
a stochastic long-run mean, and previous years of prices to simulate
daily trading and hedging on a simple option contract, and we vary the
model’s parameters, which include the mean-reversion speeds, to best
fit initial forecasted trading values with values obtained from simulated
daily trading.

The price data are for Henry Hub, consist of both gas-daily (spot)
and forward prices, and are for every trading day spanning April 1999
to March 2006. That time span captures the full range of price and
volatility regimes. For each ”gas-year,” defined as April 1st of a chosen
year to the following March 31st, we obtain a forecast value and a sim-
ulated trading value (including hedges) using our pricing tree applied
to a particular natural gas option contract. This simple contract is
similar to a storage lease in many respects, but was chosen since, for
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parameter searches, it is much faster to value than storage leases.10

The option’s forecast value is merely the model’s option value calcu-
lated on the first day of the gas-year; the simulated trading value is
obtained by running the model on each day’s historical prices during
the gas-year, following the model’s daily recommendations for exercis-
ing and hedging, and discounting all generated cash flows to the first
day of the gas-year and summing.

The two mean-reversion speeds and the long-to-short term volatility
ratio, k, are varied to find the least-squares best fit of simulated (dollar)
trading value to forecast value. One of those speeds is the mean-
reversion speed that the previously cited papers attempt to estimate.
Our estimate of this speed, a, our short-term mean-reversion speed, is
87 and is from two to over 35 times greater than what the previous
studies document. The estimate of b, our long-term mean-reversion
speed, is 0.6. Our estimate of k is 0.9. The two-factor price model in
Pilipovic (1998) is essentially a special case of our price model when
b is zero, i.e., the long-run mean propagation is geometric Brownian
motion. Our estimates indicate that refining the Pilipovic (1998) price
model to include a mean-reverting long-run mean appears warranted.

5 RESULTS

In this section we give two sets of results: one for back-testing, and the
other for relating optionality on storage leases to storage inventory.

Back-testing

Our valuation model of storage leases was back-tested against historical
gas-daily and forward prices for delivery at Henry Hub, Louisiana,
spanning 1999 to 2006. Prices were obtained for each business day
over that period and are in dollars per MMBtu. The time span was
split into seven sub-periods, each one year in length, with sub-periods
starting every April 1st and ending on the following March 31st. These
sub-periods coincide with the typical terms in the U.S. on one-year
natural gas storage leases. Data from before 1999 are not considered
since the market structure before then was in transition.

For each sub-period the model was run every business day. Each
day’s gas-daily price and forward curve were input to the model along
with fuel charges, commodity charges, and volume constraints. Our
fuel and commodity charges were held constant over the whole sub-
period, were typical in magnitude for North America, and were as fol-
lows: Injection fuel charge was 1.50%, withdrawal fuel charge was zero,

10The option contract is a ”swing” put option having 15 exercises and fixed, at-the-
money strike prices. See Jaillet, Ronn and Tompaidis (2004) for valuing such contracts.
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and both injection and withdrawal commodity charges were $0.01/MMBtu.
No other transactions costs were assumed. Also, only one ratchet was
in effect and occurred when the inventory reached half-full.

Other pertinent facts are as follows. First, two hypothetical storage
leases were back-tested: One was slow-cycle (cycle-rate of 1.50), and
one was fast-cycle (cycle-rate of 6.00). Second, rest-of-month contract
prices were not available, but were estimated each day to be a sim-
ple average of that day’s gas-daily and next-month-forward (prompt-
month) prices. Third, volatilities for forward contracts with tenors
spanning the sub-period were figured each day using the most recent
30 days of historical log-returns on those contracts and were converted
to the volatilities, σS,t and σL,t, ∀t, used in the pricing tree.11 Fourth,
our estimates of both mean-reversion speeds, the estimate for the long-
to-short term volatility ratio, and the values in Assumption 4 were
used. And fifth, for hedging six forward contracts were chosen at the
beginning of the sub-period, three with the nearest-term tenors and
three with tenors expiring in the last three months of the sub-period,
the two middle contracts were successively dropped through the back-
test as the diminishing time to the sub-period’s end-date would not
allow for more, and the volume on the contracts was chosen such that
inventory plus long positions equaled short positions. All long position
tenors had the same volume, all short positions did, as well, and the
total of existing inventory plus long positions did not necessarily equal
the total storage capacity of the lease: The total volume was chosen
each day to minimize the variance of the daily dollar-change, as given
in the pricing tree, for storage value with hedges.12

All input was fed to the valuation model each business day during
a given sub-period, and the model returned recommended injections,
withdrawals and hedges for the day. All recommendations were taken,
and all subsequent cash flows over all days were discounted to the sub-
period’s beginning and summed. This value represents the simulated
trading value over that sub-period by using the model. For compar-
ison, the storage value returned from the model at the sub-period’s
beginning represents the forecast of such trading value over the sub-
period. Our hope is that these two values are ”close.” Lastly, the
intrinsic value for the sub-period was calculated at the sub-period’s
beginning as the maximum value, net of fuel and commodity charges,

11Parameter σS,t was also constrained to be greater than or equal to 25% annualized.
Doing so aids calibration, hastens run-times, yet is not terribly constraining since these
values tend to be much higher.

12Since price movements on U.S. natural gas forward contracts are extremely similar
for tenors of two months out and beyond, a wide variety of hedging tenor choices will
lead to similar back-test results. And we again note for emphasis that in the model (and
apparently in reality) forward contracts do not add to value in expectation, they only
hedge it.
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that could be locked in using forward contracts having tenors spanning
the sub-period. Our hope is the simulated trading value consistently
beats the intrinsic value. A summary of these results, which are given
as dollars per MMBtu, is given in Exhibit 2.

Several conclusions about the results are apparent from the exhibit.
First, the average extrinsic values captured (i.e., the average simulated
trading value minus the average intrinsic value) are $1.244/MMBtu
and $0.397/MMBtu for fast-cycle and slow-cycle leases, respectively.
Extrinsic value is the optionality captured. Further, every simulated
trading value beat corresponding intrinsic value, which indicates op-
tionality is consistently captured by the model. Also, the standard
deviation of the difference of simulated and forecast trading values,
assuming the expectation of that difference is zero, is $0.619/MMBtu
for fast-cycle and $0.188/MMBtu for slow-cycle; considering the av-
erage forecast values for fast-cycle and slow-cycle are $1.473/MMBtu
and $0.587/MMBtu, respectively, the standard deviations indicate the
model has reasonable forecasting capabilities. Lastly, the number of
years the forecast trading value beat the simulated trading value is
three out of seven for fast-cycle and five out of seven for slow-cycle.
If our null-hypothesis is that forecasts should beat simulated trading
50% of the time, then a simple signs test does not reject this hypoth-
esis at the 95% confidence level, even for a one-tail test. Thus, our
forecast values do not appear biased. Admittedly, the sample size is
small, seven outcomes for each of the two types of storage leases, but
the results are encouraging so far.

Since the price model was developed to incorporate and capture
mean-reverting spot trends, these results, along with our results in
Section 4, give good evidence of strong mean-reversion in U.S. natu-
ral gas prices. Alternatively, if price shocks do not create subsequent
trends, then trading based on trends would not lead to more profit
over intrinsic in expectation.

The dynamic hedging suggested by the model is moderately suc-
cessful; however, the simulated trading values can differ from their
forecasts by quite a lot in some cases. Stochastic volatility, which is
not assumed in the price model, seems to play a role in this.

We present these results and parameter estimates under the caveat
that a time-asynchronicity exists in our price data: The gas-daily
(spot) prices are realized several hours earlier in the day than are the
forward prices. This asynchronicity is an artifact of how prices are
collected and reported each day, and obtaining datasets without this
problem is extremely challenging.

The effects of this asynchronicity, we suspect, are to cause higher
mean-reversion speed estimates, forecasted trading values, and simu-
lated trading values. One can see this by first noting that gas-daily
prices are precluded from catching up to forward prices as the latter
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trade longer through the day. The next day, however, gas-daily prices
would appear to ”lunge” toward the forward prices realized from the
day before, thus giving the appearance of strong mean-reversion. These
”lunges” create larger, opportunistic trends for simulated trading to
capture, so fitting forecast trading values to such simulated values re-
quires higher mean-reversion speed estimates.

We leave the solution to this problem to future research.

Lease optionality versus storage inventory

As previously explained, one may exploit storage lease optionality by
exploiting trends in spot prices, which implies that lease optionality is
a function of inventory level: Being partly filled allows for exploiting
both up and down trends; inventory levels in the ratchet schedule for
which more daily volume can be traded allow for better exploitation
of those trends.

Output from the valuation model shows that certain pockets of
inventory levels possess higher optionality relative to other levels at
any one time. As previously mentioned, these pockets consist of in-
ventory levels for which no injection or withdrawal is recommended,
but are poised to yield positive net-present value injections or with-
drawals should the current spot price move in either direction. Below
(above) those pockets, maximum daily injection (withdrawal) is al-
most always recommended. Non-zero injections or withdrawals that
are less than their maximums infrequently occur, but appear to oc-
cur only on the boundary-inventories of those pockets and add little
to overall value. The Secomandi (2010) theorem mentioned previously
proves such behavior for simple storage leases. This behavior in recom-
mendations implies that the model pushes one towards holding these
high-optionality inventories. Exhibit 3 shows this behavior graphically
for a lease slightly more complicated than the Secomandi (2010) theo-
rem examines.

This exhibit graphs typical output from the model and shows how
multiple pockets of high-optionality inventory levels may exist. The
horizontal axis is inventory level in thousands of MMBtus; the vertical
axis is the recommended daily injection/withdrawal in thousands of
MMBtus with injections being positive and withdrawals being nega-
tive. The maximum inventory is one-million MMBtus, and one ratchet
exists at 400,000 MMBtus: Below that ratchet, maximum daily injec-
tions and withdrawals are 12,000 MMBtus and 9,000 MMBtus, respec-
tively; at or above that ratchet, the numbers are reversed. The exhibit
shows that two pockets of high-optionality inventories exist: one just
above 200,000 MMBtus, and one just above 400,000 MMBtus. The
ratchet, which is the complication violating the assumptions of the
Secomandi (2010) theorem, causes this since being below the ratchet
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level allows for greater daily injection relative to being above the level,
while being above the level allows for greater daily withdrawal relative
to being below the level. Thus, being on each side of the ratchet level
has advantages.

Lastly, the placement of these pockets, which can change a lot
from day to day, is sensitive to, among other effects, the shape of the
forward curve, storage cycle-rate, and ratchets. And the sensitivity is
not obvious since these effects compete with each other for placement of
the pockets. We leave discussions on this sensitivity to further research.

Overall, lease optionality is very complicated relative to simple
American options, but one observation is clear from repeatedly run-
ning our model: With standard American options, exercising decreases
optionality; with lease optionality, injection and withdrawal typically
occur to increase optionality.

6 CONCLUSION

We present a two-factor tree approach for valuing natural gas storage
leases. Although other and similar valuation models have been pro-
posed in the literature, none has been tested against historical data to
quantify the optionality in storage leases. Simulated trading on our
historical price data shows our model was successful at capturing the
vast amounts of optionality forecasted by the model on both fast and
slow-cycle leases.

The price model was developed under the assumption of a strongly
mean-reverting spot price, an assumption only weakly backed hereto-
fore. We give new evidence to support the assumption, and the val-
uation model was designed to optimally exploit it. Thus, the mean-
reversion evidence we give along with the valuation model’s success
in consistently capturing vast optionality in our price data is more
evidence of strong mean-reversion in U.S. natural gas prices.

However, our price data contain a time-asynchronicity, as previ-
ously mentioned, that may skew results. Thus, a direction for future
research is to back-test using price data where all prices are essentially
collected at the same time each day. Unfortunately, time-synchronized
public price data is very hard to come by.

Another research direction is to assess the sensitivities and drivers
of storage lease value and optionality. From our initial research, the
optionality is not well-behaved: It is dependent on several drivers. As-
sessing drivers of optionality will lead to more intuition about optimal
storage trading.
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EXHIBIT 1: Gas-Daily Spot Prices for Henry Hub Showing Mean-Reversion and Seasonality  

 



EXHIBIT 2: Model Back-Testing by Historical Year on Henry
Hub

(Fast-Cycle Storage: 6-cycle)
Simulated Forecast
Trading Trading Intrinsic

Lease Term Value Value Value
1999 / 2000 0.513 0.667 0.393
2000 / 2001 1.157 0.504 0.130
2001 / 2002 1.084 1.982 0.111
2002 / 2003 1.600 2.107 0.418
2003 / 2004 1.681 1.265 0.157
2004 / 2005 1.644 1.466 0.274
2005 / 2006 3.302 2.320 0.788

(Slow-Cycle Storage: 1.5-cycle)
Simulated Forecast
Trading Trading Intrinsic

Lease Term Value Value Value
1999 / 2000 0.354 0.363 0.254
2000 / 2001 0.375 0.197 0.061
2001 / 2002 0.453 0.721 0.046
2002 / 2003 0.714 0.774 0.263
2003 / 2004 0.405 0.458 0.056
2004 / 2005 0.428 0.585 0.142
2005 / 2006 1.348 1.014 0.478

Values are in dollars/MMBtu. ”Simulated Trading Value”

results from the model’s daily trade recommendations.

”Forecast Trading Value” is the model’s expected trading

value from the beginning of the trading period. ”Intrinsic

Value” is the riskless value that could be locked in using

forward contracts at the beginning of the trading period.



EXHIBIT 3: Example of Lease Optionality Versus Inventory Level

-

6

?

Inventory Level

R
e
c
o
m

m
e
n
d
e
d

In
je

c
ti

o
n
/
W

it
h
d
ra

w
a
l

1
0
0

2
0
0

3
0
0

4
0
0

9

12

-9

-12

0

E
E
EE

E
EE

EE �
�
�� EE

EE . . .

Both inventory and recommended injections/withdrawals are given in ’000s-MMBtus. In-
jections are positive; withdrawals are negative. Inventories for which no injection or
withdrawal is recommended represent high-optionality inventories.


